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Abstract
Modern AAA video games feature huge game levels and maps which are increasingly hard for level testers to cover exhaustively.
As a result, games often ship with catastrophic bugs such as the player falling through the floor or being stuck in walls.
We propose an approach specifically targeted at reachability bugs in simulated 3D environments based on the powerful
exploration algorithm, Go-Explore, which saves unique checkpoints across the map and then identifies promising ones to
explore from. We show that when coupled with simple heuristics derived from the game’s navigation mesh, Go-Explore
finds challenging bugs and comprehensively explores complex environments without the need for human demonstration or
knowledge of the game dynamics. Go-Explore vastly outperforms more complicated baselines including reinforcement learning
with intrinsic curiosity in both covering the navigation mesh and number of unique positions across the map discovered.
Finally, due to our use of parallel agents, our algorithm can fully cover a vast 1.5km x 1.5km game world within 10 hours on a
single machine making it extremely promising for continuous testing suites.
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1. Introduction
With the scope and size of modern AAA games ever in-
creasing, QA teams are struggling to exhaustively test
these games [1, 2]. It is becoming increasingly common
for games to ship with many bugs that are discovered by
end-users and only get fixed several months following
the title’s release [3, 4]. The challenge of covering every
corner of a multi-square mile game world is exacerbated
by the fact that the maps constantly change during de-
velopment which requires tests to be repeated hundreds
of times.

A large proportion of bugs that occur in game worlds
are related to reachability [5]. Game testers need to ver-
ify that every area of a map that should be reachable
through the player’s abilities are reachable and haven’t
been inadvertently blocked off during iteration. Some
areas are designed to test the player’s skill and are hard
to reach, but not impossible. Finally, there are those areas
of the map that should not be reachable—in these areas,
players could fall through the floor or find themselves
inside geometry that is not part of the gameplay area. Au-
tomating reachability testing for large game maps would
alleviate a huge burden during game development and
allow bugs to be identified earlier without human labor.
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A large body of prior work has considered ways to au-
tomate these tests including by imitating recorded human
actions [6, 7]. However, recorded actions are not robust to
level changes, rely on environment determinism, and can-
not verify that forbidden areas are unreachable. Other
approaches include those that combine reinforcement
learning with curiosity-based reward bonuses [8, 9, 10].
Even so, these methods must use approximations for the
vast observation spaces that feature in modern games,
and have been shown under these settings to be brittle
to catastrophic forgetting [11].

In contrast, in this paper, we investigate Go-
Explore [11], a simple but powerful exploration algo-
rithm which maintains a cache of discovered locations,
and identifies promising locations with heuristics to reset
and explore from. Whilst Ecoffet et al. [11] observed that
Go-Explore was able to discover a known reachability
bug—the “treasure room curse” [12]—in the course of
solving Montezuma’s revenge; to the best of our knowl-
edge, ours is the first application to 3D environments. We
show that Go-Explore can readily handle parallelization
and rapidly explore vast game worlds of many square
miles. Furthermore, we find empirically that random
exploration is asymptotically better than learned explo-
ration such as Random Network Distillation [13] under
the same conditions which makes our approach easier to
implement.

The core contributions of this paper are as follows:

1. We apply a simple and efficient algorithm, Go-
Explore, for discovering reachable positions in
hard exploration maps without human demon-
strations or knowledge of the game dynamics.
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(a) Small Map (b) Large Map (c) Traversal Map

Figure 1: We evaluate Go-Explore for reachability testing on three proprietary test game levels of increasing difficulty
designed in Unreal Engine 5. The smallest is 100m x 100m and the largest 1.5km x 1.5km which matches the scale of modern
game maps. We initially sample points from the nav-mesh which act as ‘goals’ for exploration. Reached and unreached goals
at the end of training are colored in green and red respectively. We additionally color non-goal points we discover as magenta
if they are within 3m of the nav-mesh and yellow otherwise. These yellow points are discovered positions that an agent
would not be able to reach by simply following the nav-mesh, and are often indicative of an unexpected bug. For example, on
the small map, the yellow points on the south wall point to an incorrectly configured section which allows the agent to reach
the top of the wall and fall off the map leading to undefined behavior. Yellow points on the left and bottom of the large map
show places where the agent can fall off the map.

2. We propose a criteria to classify discovered points
into expected and unexpected by comparison to
the game navigation mesh. Undiscovered regions
of the navigation mesh may also be flagged.

3. We show that by parallelizing agents within a
single game instance, we can exhaustively cover
vast game maps of the size 1.5km x 1.5km within
10 hours on a single machine, making our algo-
rithm extremely promising for continuous testing
suites.

2. Preliminaries
We begin by introducing traditional pathing in video
games via navigation meshes, the reinforcement learning
(RL) paradigm, and exploration algorithms in RL. In this
paper, we consider the problem of automatically testing
for “reachability” which we define to be determining the
set of locations of the map an agent can reach. This is
distinct from the traditional definition of graph reacha-
bility as we assume no knowledge of the environment
dynamics to connect adjacent positions, and actions may
have stochasticity.

2.1. Navigation Meshes.
AI agents in modern video games typically use a nav-
igation mesh [14, 15] or “nav-mesh” to navigate from
one area of a map to another. A nav-mesh is a collection

of two-dimensional convex polygons [16] which define
areas of the map that are traversable by agents. Within
each polygon, an agent can freely move without being
obstructed by any environment obstacles such as trees
and rocks. Adjacent polygons are connected together in
a graph and pathfinding between them can be done with
classic graph search algorithms such as A* [17].

A naïve method of verifying reachability may be to
send an agent to every node in the nav-mesh, one by
one. However, the nav-mesh may not cover the entire
map and there are often gaps between patches of the nav-
mesh that cannot be traversed by just walking. Instead,
we may use the nav-mesh as a starting point for positions
we expect our agent to reach. By comparing the results
of an exploration algorithm vs. this ground truth, we can
categorize observed positions as expected or unexpected
and identify positions on the nav-mesh that we expect
to reach but have not been reached which we illustrate
in Figure 1.

2.2. Reinforcement Learning.
A natural way to accelerate game testing would be to
try and train agents to explore and find novel states. Re-
inforcement Learning [18, 19] is a successful paradigm
for learning intelligent agents where optimal behav-
ior may be specified by a reward function. We model
the game environment as a Markov Decision Process
(MDP, Sutton and Barto [19]), defined as a tuple 𝑀 =
(𝒮,𝒜, 𝑃,𝑅, 𝜌0, 𝛾), where𝒮 and𝒜 denote the state space



and action space respectively, 𝑃 (𝑠′|𝑠, 𝑎) the transition
dynamics, 𝑅(𝑠, 𝑎) the reward function, 𝜌0 the initial state
distribution, and 𝛾 ∈ (0, 1) the discount factor. The goal
in RL is to optimize a policy 𝜋(𝑎|𝑠) that maximizes the ex-
pected discounted return E𝜋,𝑃,𝜌0

[︀∑︀∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡, 𝑎𝑡)
]︀
.

2.3. Exploration in RL.
Count-based exploration describes a family of algorithms
that assign reward bonuses based on visitation count to
encourage agents to seek out novel states. For finite state
MDPs, we define the visitation count 𝑛(𝑠) of a state 𝑠 ∈
𝑆 to be the number of times a particular state has been
encountered. Prior methods [20, 21] have proposed to
assign a reward bonus of 𝑟𝑡 = 1/𝑛(𝑠) or 𝑟𝑡 = 1/

√︀
𝑛(𝑠)

at each time step. These methods may be extended to
MDPs with continuous state spaces by treating 𝑛(𝑠) as
a density. Even so, count-based methods are hard to
scale to larger state spaces and cannot naturally handle
environments in parallel.

Random Network Distillation (RND, Burda et al. [13])
is a flexible way to compute an exploration bonus for
high-dimensional state spaces by estimating the error
of a neural network predicting features of the game ob-
servations given by a fixed randomly initialized neural
network. Concretely, the fixed randomly initialized target
network 𝑓 : 𝑆 → R𝑘 computes an embedding and the
predictor network 𝑓𝜃 : 𝑆 → R𝑘 is trained by gradient de-
scent to minimize the prediction error ||𝑓(𝑠)− 𝑓𝜃(𝑠)||2
with respect to its parameters, 𝜃. This prediction error is
then used as the reward bonus. Over the course of train-
ing the randomly initialized neural network 𝑓 is distilled
into 𝑓𝜃 . Intuitively, the prediction error is expected to
be higher for novel states dissimilar to the ones that the
predictor has been trained on.

2.4. Go-Explore.
Go-Explore [11] is an alternate approach for hard-
exploration problems which maintains a cache of pre-
viously explored states and then uses heuristics to peri-
odically select promising states and then explore from
them. Once sufficiently high return trajectories are found
(first phase, exploration), the discovered behavior is made
robust with imitation learning [22] (second phase, robus-
tify). This algorithm aims to avoid the phenomenon of
“derailment” that may occur in algorithms which do not
have explicit memory such as RND where the predictor
network may lose information about previously reached
states due to catastrophic forgetting. This phenomenon
could be even likelier to occur in large maps.

The original Go-Explore [11] assumes full access to a
simulator of the environment and the ability to reset to
any state previously seen, i.e. being able to choose 𝜌0
throughout training. This assumption is satisfied for the

Algorithm 1 Compute Reachability (Exploration Phase
of Go-Explore)

1: Input: reset priority function 𝜂 : 𝑆 → R, total timesteps 𝑇 ,
reset interval 𝑡reset , distance threshold 𝐾

2: Initialize: 𝑆disc = ∅, set of visited positions
3: for 𝑡 = 1, . . . , 𝑇 do
4: Observe state 𝑠𝑡
5: if 𝑆disc = ∅ or 𝑑(𝑆disc, 𝑠𝑡) > 𝐾 then
6: 𝑆disc .insert(𝑠𝑡)
7: end if
8: if 𝑡 mod 𝑡reset = 0 then
9: Sample state 𝑠𝑡+1 from 𝑆disc using 𝜂

10: else
11: Take random action from 𝑠𝑡 to transition to 𝑠𝑡+1

12: end if
13: end for

video games we test as we are able to save and restore
simulator states.

3. Go-Explore for Simulated 3D
Environments

In this section, we describe our adaptation of Go-Explore
to 3D video games and the specific reset heuristics we
use to identify promising previously discovered locations.
Since we do not need the second phase of Go-Explore to
imitate an optimal trajectory, the algorithm listed in Al-
gorithm 1 simply builds a set of discovered positions 𝑆disc

and thus resembles the first phase of Go-Explore with a
tailored reset strategy.

Given a set of 3D positions 𝑋 and a distance metric
𝑑, we define the distance from the set 𝑋 to a point 𝑦,
𝑑(𝑋, 𝑦) := min{𝑑(𝑥, 𝑦)|𝑥 ∈ 𝑋}. This can be efficiently
computed by data structures such as R*-Trees [23] which
support nearest neighbor queries in amortized log time.
We define two styles of reset heuristic: one based on state
visitation counts, and the other guided by distance to the
closest undiscovered point on the nav-mesh.

3.1. Visitation-Based.
We discretize the 𝑠 = (𝑥, 𝑦, 𝑧) positions in the game to a
fixed granularity 𝐾 and then maintain visitation counts
of each state. This allows us to reset to a state in 𝑆disc

with probability proportional to 1
𝑛(𝑠)

where 𝑛(𝑠) is the
visitation count. By default, we measure distance in me-
ters and use a granularity of 𝐾 = 1, i.e. a new position is
deemed to be reached if it is more than one meter away
from any previous position. This is in contrast to the
cell-based archive chosen by Ecoffet et al. [11] in order
to avoid the same physical location being saved multiple
times due to viewpoint changes.
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Figure 2: Comparative evaluation of Go-Explore against the baselines showing the percentage of nav-mesh goals (illustrated
in Figure 1) reached on the top and unique positions discovered (up to 1m discretization) on the bottom. We note that
Go-Explore vastly outperforms RND and pure random exploration especially on the larger maps and is reasonably stable to
reset heuristic. Results show mean and standard deviation computed over 4 seeds.

3.2. Nav-Mesh Goal Guided.
We use the game nav-mesh to produce a set of points
𝑆nav-mesh or “goals” that we expect to be reachable but
have not reached yet as a guide to exploration. This
set is constructed by sampling points at a pre-specified
threshold at initialization. Throughout training, we up-
date 𝑆nav-mesh by draining any goals that are within one
meter of a discovered position. We may then reset to
discovered states in 𝑆disc with probability proportional
to 1

𝑑(𝑆nav-mesh,·)
.

We may also consider a weighted combination of the
two reset heuristics as in Ecoffet et al. [11] to define a
custom reset priority function 𝜂 : 𝑆 → R. This allows
agents to balance between the two reset styles and avoid
the failure mode of persistently attempting to reset close
to an unreachable nav-mesh goal. Once we reset to a
promising state, we follow Ecoffet et al. [11] and take
random actions to explore. The notion of a goal generated
from the nav-mesh could also be extended to goals on any
interesting part of the map. For the games we consider,
we only rely on the ability to reset to a specified position,
the agent’s pose and orientation are randomized.

4. Experimental Evaluation
We evaluate our approach on proprietary test game levels
designed in Unreal Engine 5. We consider three maps of
increasing difficulty:

• Small Map: A small test bed with obstacles and
two intentionally placed bugs (approx. 100m x
100m)

• LargeMap: A vast cityscape to test the scalability
of each algorithm (approx. 1.5km x 1.5km). This

map is among the largest considered by modern
automated approaches.

• Traversal Map: A large multi-level map with
challenging geometry as a hard exploration chal-
lenge.

The game features 3D voxel observations and optional
raycast, position and orientation features. Agents move
using a multi-discrete action space matching that of a
standard game controller. The maps are illustrated in Fig-
ure 1.

For Go-Explore, we evaluate all reset heuristics previ-
ously described in the previous section—visitation-based,
goal-based and mixed. We use a default distance thresh-
old of 𝐾 = 1 for adding a new point and use the same
threshold for evaluating how many unique positions an
agent visits over the course of training. The agents are
reset every 𝑡reset = 128 steps. We first evaluate the perfor-
mance of Go-Explore against the baselines, RND (using
default hyperparameters with a 2-layer voxel CNN, opti-
mized using PPO [24]) and random exploration, across
the three test maps. Next, we ablate various components
showing that Go-Explore is stable to hyperparameter
choice, and that random exploration is critical for strong
performance on large maps.

For each experiment, we accelerate training by run-
ning 16 independent agents within each map that can-
not interact with or see each other. Each agent is syn-
chronized with a central cache of discovered positions.
We train for 200K timesteps on the small map and 10M
timesteps for both large maps, and repeat each exper-
iment with 4 random seeds. Due to our use of paral-
lelization, wall-clock time for the small map is around
30 minutes, whereas the large maps only take 10 hours
to cover on a single F8 Azure Virtual Machine. We use a
GeForce RTX 2080 GPU only for the RND baseline.

https://github.com/openai/random-network-distillation


Figure 3: Illustration of a bug on the small map surfaced
by Go-Explore. The goal on the wall means the agent is
unexpectedly able to reach the top of the wall and then fall
off the map.

4.1. Main Evaluation
We first show that our algorithm can discover the inten-
tionally placed bugs on the small map and that it reliably
outperforms the baselines across a variety of configura-
tions. Next, on the large maps, the difference between
Go-Explore and the baselines grows more stark with the
baselines making little progress. On these maps, Go-
Explore can cover the vast game worlds and discover
many unexpected regions off-map.

4.1.1. Bugs on the Small Map.

We compare Go-Explore with all three reset heuristics
on the left of Figure 2 evaluating coverage of the nav-
mesh goals and unique positions found. On this map, all
three reset heuristics are comparable and are strong in
terms of positions reached and goals found. We manage
to consistently find the two bugs that were placed on the
small map, one where an incorrectly configured point led
to agents being able to reach the top of the bounding wall
and fall off the map which we illustrate in Figure 3 and
another where an unreachable volume was incorrectly
placed so an agent could incorrectly enter into a solid
block. The wall bug can also be identified in Figure 1
where the cluster of yellow points on the south wall of
the map are unexpected and then can easily be flagged
to the level developer.

4.1.2. Large and Traversal Maps.

We perform the same comparison as before on the larger
maps as shown in the center and right side of Figure 2.
On these maps, the difference between Go-Explore and
the baselines grows more stark with Go-Explore being
the only algorithm that can reliably cover at least the
nav-mesh positions. We also notice a difference between
different styles of reset heuristic with Go-Explore. On the
large map, whilst the goal-based reset heuristic leads to
the quickest coverage of the nav-mesh, it discovers fewer
unique positions than the heuristics based on visitation
count. This advocates for reset heuristics which can

Table 1
Ablations on the Small Map showing Go-Explore is robust to
hyperparameter changes with all setups achieving 100% of
the goals before 200K timesteps. The default setting uses a
threshold 𝐾 = 1m and a reset weight power 𝑝 = 1. Mean
and standard deviation shown over 4 seeds.

Reset
Type

Hyper-
parameters

Timesteps to
All Goals

Positions
Found

Goals

Default 128K 2485.2 ± 21.4
𝐾 = 5 110K 2564.0 ± 7.9
𝑝 = 1/2 167K 2430.8 ± 37.6
𝑝 = 2 106K 2422.5 ± 14.8

Position

Default 119K 2649.5 ± 30.6
𝐾 = 5 90K 2736.0 ± 14.8
𝑝 = 1/2 156K 2541.2 ± 21.3
𝑝 = 2 111K 2705.8 ± 36.8

jointly encode information about undiscovered nav-mesh
goals and visitation.

In Figure 1, we can see discovered regions of both maps
which are far away from the nav-mesh which are unex-
pected. In the case of the traversal map, these correspond
to being able to reach the top of large structures and fall
off to unexpected regions. This is a common source of
reachability bugs and the automated flagging of prob-
lematic areas promises to save level designers and QA
significant amounts of time. We additionally note that
Go-Explore scales well with map size—when comparing
the small and large map, Go-Explore only takes ∼50x
more timesteps to cover ∼200x more surface area, when
comparing both nav-meshes. Therefore, our algorithm
may readily be integrated into nightly continuous test-
ing suites as it only takes 10 hours on a single machine to
fully cover a vast 1.5km x 1.5km game world. This could
be further accelerated with parallel game instances. Go-
Explore is also efficient in terms of memory and time as
we use a R*-Tree [23] to cache positions. At the end of ex-
ploration on the large map, the ∼200K discovered points
take around 1MB to store. In a tree this size, checking
and inserting a newly discovered point also takes less
than a millisecond on average which is far less than the
rate of simulation for the game.

4.2. Ablation Studies
In this subsection, we present ablation studies showing
that Go-Explore is stable to hyperparameter choice; and
showing the benefit of random exploration over RND
even when both have smart resetting. We further show
ablations on Go-Explore using uniform sampling to show
that the design of reset heuristic is important.



4.2.1. Hyperparameters.

We present ablations on the distance threshold 𝐾 re-
quired to add a new point to our set of visited positions
𝑆disc on the small map in Table 1. We also include abla-
tions on the power of the reset heuristic 𝑝, i.e. resetting
using the heuristic 𝜂𝑝 instead of 𝜂. The original Go-
Explore paper used a power of 𝑝 = 1

2
, i.e. taking the

square root of all scores, however we find that 𝑝 = 1
works better for our use case which matches Kolter and
Ng [25]. We see a marginal benefit from using 𝐾 = 5
for position based resetting, however we believe 𝐾 = 1
could lead to better checkpointing on hard exploration
environments.

4.2.2. RND vs. Random Exploration.

We show that even when allowing the RND agent to reset
to promising positions in the same way as Go-Explore
on the large map, labeled “RND + Go-Exp. Sampling”
in Figure 4, the agent still under-performs Go-Explore
(Random + Go-Exp. Sampling) in terms of final perfor-
mance. However, we do note that RND-based exploration
(in dashed lines) does tend to be initially better but then
trails off. This could imply that the learned exploratory
behavior from RND does not transfer to later regions of
the map, perhaps preferring areas it has obtained reward
from in the past. This lends further support to our use of
Go-Explore style random exploration which requires no
neural network overhead and is simpler to implement.

4.2.3. Go-Explore Heuristics vs. Uniform
Sampling.

We further analyze the design choices involved in select-
ing sampling heuristics and ask how much better they are
than just sampling visited points uniformly at random.
This corresponds to the comparison between Go-Exp.
Sampling (in green) vs. Unif. Sampling in Figure 4 (in
blue). Although uniform sampling hugely boosts perfor-
mance over simply resetting from the start position (in
red), it does not reach the same levels of performance as
with the carefully chosen heuristics.

5. Related Work
Go-Explore has seen extensive use in discovering op-
timal policies for 2D games like Atari [11]; but to our
knowledge, it has not seen use in reachability testing for
large-scale modern 3D game environments.

5.1. Learning to Explore.
Curiosity and imitation-based approaches where agents
learn to explore have been successfully used to automate
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Figure 4: Ablations for both random and RND-based explo-
ration under visitation-based sampling (in blue) and uniform
sampling (in green) on the large map. This provides further
support for purely random exploration, and shows that well-
designed reset heuristics beat naïve uniform sampling. Results
show mean and standard deviation computed over 4 seeds.

game testing in past work. Gordillo et al. [8] showed that
a count-based exploration bonus with additional bonuses
for reaching corners of the map approach with visitation-
based resets was successful in covering a 500m x 500m
map. In contrast, we don’t need a reward signal and
our resets happen at a much higher frequency. CCPT [9]
used a hybrid approach combining RND and imitating hu-
man trajectories. However, imitation-based approaches
are liable to break with large map changes during devel-
opment. Inspector [10] combines RND with a separate
module that attempts to identify and interact with key
objects in a scene. The interaction module could be a
promising orthogonal extension to Go-Explore. Bergdahl
et al. [26] consider an approach where an agent is reward
on reaching pre-specified goals which inherently biases
against exploring other parts of the game.

5.2. Graph-based Search.
Traditional search-based methods have shown promise
in small games but are harder to scale. Rapidly-Exploring
Random Trees (RRT, Zhan et al. [27]) grows a state tree
and labels edges with actions; but scales with the game
action space. CA-RRT [28] improves on RRT by augment-
ing search with human demonstrations but is still only
evaluated on relatively small maps. SPTM [29] navigates
by building a graph of the environment and learning to
retrieve nodes for planning.

6. Conclusion
In this paper, we show that Go-Explore allows for sim-
ple, scalable and efficient reachability testing of the vast
3D game maps typically found in modern AAA video
games without the need for any human demonstration
or knowledge of the game dynamics. In contrast to prior
curiosity-based RL approaches, Go-Explore avoids the
issue of catastrophic forgetting by maintaining a cache of
discovered positions. The random exploration advocated



by Ecoffet et al. [11] is significantly simpler to imple-
ment and avoids the use of neural networks. By flagging
discovered points that are far away from the nav-mesh,
we are able to identify reachability issues and highlight
problematic points on the map. Due to the fast run-time
and ease of implementation of the algorithm, we expect
Go-Explore may be readily integrated into a continuous
testing framework which would allow bugs to be identi-
fied as soon as each level is updated.
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